Ultrafilters and Michael Spaces

Arturo Martínez-Celis

Centro de Ciencias Matemáticas, UNAM Hejnice, 2015 Joint work with Michael Hrušák

Arturo Martínez-Celis

A topological space *X* is *Lindelöf* if every open cover has a countable subcover.

Arturo Martínez-Celis

A topological space *X* is *Lindelöf* if every open cover has a countable subcover.

A Lindelöf space X is *productively Lindelöf* if $X \times Y$ is Lindelöf for every Lindelöf space Y.

A topological space *X* is *Lindelöf* if every open cover has a countable subcover.

A Lindelöf space X is *productively Lindelöf* if $X \times Y$ is Lindelöf for every Lindelöf space Y.

Examples.

Compact spaces are productively Lindelöf.

• σ -compact spaces are productively Lindelöf.

What kind of metric Lindelöf spaces can be productively Lindelöf?

Arturo Martínez-Celis

What kind of metric Lindelöf spaces can be productively Lindelöf?

E. Michael

CH implies that metric productively Lindelöf spaces are σ -compact.

Under CH, there is a Lindelöf space which has a non-Lindelöf product with $\omega^{\omega}.$

A Lindelöf space *X* is a *Michael space* if its product with the space of the irrational numbers is not a Lindelöf space.

Michael space problem

Is there a Michael space?

Arturo Martínez-Celis

A Lindelöf space *X* is a *Michael space* if its product with the space of the irrational numbers is not a Lindelöf space.

Michael space problem

Is there a Michael space?

Under $\mathfrak{b} = \omega_1$ (E. Michael) or if $cov(\mathcal{M}) = \mathfrak{d}$ (J. Moore) they do!. For the general case the answer is still unknown.

Let \mathfrak{U} be a filter over ω and $f, g \in \omega^{\omega}$, we say that $f \leq_{\mathfrak{U}} g$ if $\{n \in \omega : f(n) \leq g(n)\} \in \mathfrak{U}$.

Arturo Martínez-Celis

Let \mathfrak{U} be a filter over ω and $f, g \in \omega^{\omega}$, we say that $f \leq_{\mathfrak{U}} g$ if $\{n \in \omega : f(n) \leq g(n)\} \in \mathfrak{U}$.

If $\mathfrak U$ is an ultrafilter then $\leq_{\mathfrak U}$ is a total order and if

 $\mathfrak{d}_{\mathfrak{U}} = \min\{|\mathcal{A}| : \mathcal{A} \text{ is } \leq_{\mathfrak{U}} \text{-cofinal}\}$

then $\mathfrak{d}_{\mathfrak{U}}$ is a regular cardinal and $\mathfrak{b}\leq\mathfrak{d}_{\mathfrak{U}}\leq\mathfrak{d}.$

Let \mathfrak{U} be a filter over ω and $f, g \in \omega^{\omega}$, we say that $f \leq_{\mathfrak{U}} g$ if $\{n \in \omega : f(n) \leq g(n)\} \in \mathfrak{U}$.

If $\mathfrak U$ is an ultrafilter then $\leq_{\mathfrak U}$ is a total order and if

 $\mathfrak{d}_{\mathfrak{U}} = \min\{|\mathcal{A}| : \mathcal{A} \text{ is } \leq_{\mathfrak{U}} \text{ -cofinal}\}$

then $\mathfrak{d}_{\mathfrak{U}}$ is a regular cardinal and $\mathfrak{b} \leq \mathfrak{d}_{\mathfrak{U}} \leq \mathfrak{d}$. For every $A \subseteq \omega^{\omega}$ we define

$$\mathfrak{d}_{\mathfrak{u}}(A) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq A \text{ is } \leq_{\mathfrak{U}} \text{-cofinal in } A)\}.$$

Arturo Martínez-Celis

A filter \mathcal{U} over ω is a Michael filter if for every compact set $\mathcal{K} \subseteq \omega^{\omega}$, if $\mathfrak{d}_{\mathcal{U}}(\mathcal{K}) > \omega$ then $\mathfrak{d}_{\mathcal{U}}(\mathcal{K}) \ge \mathfrak{d}_{\mathcal{U}}$

A filter \mathcal{U} over ω is a Michael filter if for every compact set $K \subseteq \omega^{\omega}$, if $\mathfrak{d}_{\mathcal{U}}(K) > \omega$ then $\mathfrak{d}_{\mathcal{U}}(K) \ge \mathfrak{d}_{\mathcal{U}}$

Examples.... well, example

The Frechet Filter.

Arturo Martínez-Celis

A filter \mathcal{U} over ω is a Michael filter if for every compact set $\mathcal{K} \subseteq \omega^{\omega}$, if $\mathfrak{d}_{\mathcal{U}}(\mathcal{K}) > \omega$ then $\mathfrak{d}_{\mathcal{U}}(\mathcal{K}) \ge \mathfrak{d}_{\mathcal{U}}$

Examples.... well, example

The Frechet Filter.

Theorem

If there is a Michael ultrafilter, then there is a Michael space.

Arturo Martínez-Celis

Let $\{f_{\alpha}\}_{\alpha \in \mathfrak{d}_{\mathfrak{U}}}$ be a strictly $\leq_{\mathfrak{U}}$ -increasing $\leq_{\mathfrak{U}}$ -unbounded sequence and for each $\alpha \in \mathfrak{d}_{\mathfrak{U}}$ define

$$X_{\alpha} = \{ f \in \omega^{\omega} : \exists \beta < \alpha (f \leq_{\mathfrak{U}} f_{\beta}) \}$$

Properties of X_{α}

If $\alpha < \beta$ then $X_{\alpha} \subsetneq X_{\beta}$,

for every compact $K \subseteq \omega^{\omega}$, the least ordinal γ such that $K \subseteq X_{\gamma}$ has finite or countable cofinality,

The last one follows from the fact that if γ is not a succesor ordinal, then one can construct an internal $\leq_{\mathfrak{U}}$ -unbounded family of cardinality $cof(\gamma)$. The rest follows from the following.

Theorem (J. Moore)

If there exist a sequence $\langle X_{\alpha} \rangle_{\alpha \leq \kappa}$ of subsets of irrational numbers such that

- If $\alpha < \beta$ then $X_{\alpha} \subsetneq X_{\beta}$,
- for every compact $K \subseteq \omega^{\omega}$, the least ordinal γ such that $K \subseteq X_{\gamma}$ has finite or countable cofinality,

then there exists a Michael space.

Therefore, the existence of a Michael Ultrafilter implies the existence of a Michael space.

The easiest way to construct a Michael ultrafilter is to construct an ultrafilter with $\mathfrak{d}_{\mathfrak{U}} = \omega_1$. As $\mathfrak{d}_{\mathfrak{U}} \leq \mathfrak{d}$ we have the following fact

Easy fact

$[\mathfrak{d} = \omega_1]$ Every Ultrafilter is a Michael ultrafilter.

The easiest way to construct a Michael ultrafilter is to construct an ultrafilter with $\mathfrak{d}_{\mathfrak{U}} = \omega_1$. As $\mathfrak{d}_{\mathfrak{U}} \leq \mathfrak{d}$ we have the following fact

Easy fact

 $[\mathfrak{d} = \omega_1]$ Every Ultrafilter is a Michael ultrafilter.

Are all ultrafilters Michael ultrafilters?

Arturo Martínez-Celis

The easiest way to construct a Michael ultrafilter is to construct an ultrafilter with $\mathfrak{d}_{\mathfrak{U}} = \omega_1$. As $\mathfrak{d}_{\mathfrak{U}} \leq \mathfrak{d}$ we have the following fact

Easy fact

 $[\mathfrak{d} = \omega_1]$ Every Ultrafilter is a Michael ultrafilter.

Are all ultrafilters Michael ultrafilters?

They are not!

It is consistent that there is an ultrafilter which is not a Michael ultrafilter.

In Miller's model, every *p*-point has character ω_1 and $\mathfrak{d} = \mathfrak{d}_{\mathfrak{U}} = \omega_2$. The only thing left to do is to show that there is a compact set *K* such that $\mathfrak{d}_{\mathfrak{U}}(K) = \omega_1$. For every $A \subseteq \omega$ consider its increasing ennumeration $\{a_n : n \in \omega\}$ and define $\varphi_A \in \omega^{\omega}$ as

$$\varphi_{\mathcal{A}}(k) = \begin{cases} a_0 & \text{if } k = a_0 \\ a_{k+1} - a_k & \text{if } k = a_{n+1} \\ 0 & \text{in other case} \end{cases}$$

and let $K = \{\varphi_A : A \subseteq \omega\}$. *K* is a compact space and if $A \subseteq B$ then $\varphi_A | A \ge \varphi_B | A$. Thefore the following hold:

If *A* is a pseudointersection of $\{A_i\}_{i \in \omega}$ then $\varphi_A | A \ge^* \varphi_{A_i} | A$,

If \mathcal{B} is a base for the ultrafilter \mathfrak{U} , then $\{\varphi_B : B \in \mathcal{B}\}$ is a $\leq_{\mathfrak{U}}$ -cofinal sequence.

As a consequence, in Miller's model $\mathfrak{d}_{\mathfrak{U}}(K) = \omega_1$.

Corollary

In Miller's model, every p-point fails to be a Michael ultrafilter.

I still don't know if there is a Michael ultrafilter in Miller's Model.

Arturo Martínez-Celis

Selective ultrafilters *exists generically* if every filter of cardinality smaller than c can be extended to a selective ultrafilter.

Selective ultrafilters *exists generically* if every filter of cardinality smaller than c can be extended to a selective ultrafilter.

Theorem (Canjar)

Selective ultrafilters exist generically if and only if $cov(\mathcal{M}) = \mathfrak{c}$.

Arturo Martínez-Celis

Selective ultrafilters *exists generically* if every filter of cardinality smaller than c can be extended to a selective ultrafilter.

Theorem (Canjar)

Selective ultrafilters exist generically if and only if $cov(\mathcal{M}) = \mathfrak{c}$.

Theorem

If $cov(\mathcal{M}) = c$ and c is a regular cardinal, then Michael ultrafilters exists generically.

Arturo Martínez-Celis

Theorem

If $\mathfrak{t} = \mathfrak{h}$, then $P_{\omega}/\mathsf{FIN} \Vdash "\mathcal{U}_{gen}$ is a Michael ultrafilter"

Arturo Martínez-Celis

Theorem

If $\mathfrak{t} = \mathfrak{h}$, then $P_{\omega}/\mathsf{FIN} \Vdash "\mathcal{U}_{gen}$ is a Michael ultrafilter"

Proof. P_{ω} /FIN doesn't add reals and collapses \mathfrak{c} to \mathfrak{h} . So, if the theorem is false, there should be a ground model compact K, an uncountable subcollection $\{f_{\alpha}\}_{\alpha\in\lambda}$ with $\lambda < \mathfrak{h}$, and X such that

$$X \Vdash ``\{f_{lpha}\}_{lpha \in \lambda}$$
 is $\leq_{\mathfrak{U}_{gen}}$ cofinal in K "

Recall that the Frechet filter is Michael, therefore there is f not dominated by $\{f_{\alpha}\}_{\alpha \in \lambda}$. If $A_{\alpha} = \{n : f(n) \ge f_{\alpha}(n)\}$, then $\{A_{\alpha}\}$ is a centered family. This family has a pseudointersection contained in X!

Arturo Martínez-Celis

The big question

Is there a Michael space? Is there a Michael ultrafilter?

Arturo Martínez-Celis

The big question

Is there a Michael space? Is there a Michael ultrafilter?

A not so big... but still big question

Is there a Michael Space on the Mathias/Laver model? Is there a Michael Ultrafilter on the Mathias/Laver model?

The big question

Is there a Michael space? Is there a Michael ultrafilter?

A not so big... but still big question

Is there a Michael Space on the Mathias/Laver model? Is there a Michael Ultrafilter on the Mathias/Laver model?

	Michael Space	Michael Ultrafilter
ZFC	?	?
Cohen	Yes	Yes
Random	Yes	Yes
Hechler	Yes	Yes
Mathias	?	?
Laver	?	?
Miller	Yes	?
Sacks	Yes	Yes

Arturo Martínez-Celis

More questions

 $P_{\omega}/\text{FIN} \Vdash "\mathcal{U}_{gen}$ is a Michael ultrafilter "?

Arturo Martínez-Celis

UNAM

More questions

 $P_{\omega}/\text{FIN} \Vdash "\mathcal{U}_{gen}$ is a Michael ultrafilter "?

Last, but not less important

Are there another example of a Michael filter? Can we classify Borel Michael filters?

Arturo Martínez-Celis

Arturo Martínez-Celis

Not a cat person?

Arturo Martínez-Celis